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Abstract

This paper identifies value-investing opportunities in the U.S. corporate bond market through the

joint construction of a bond valuation model and a return factor model. The valuation model

explains the cross-sectional corporate bond yield variation with a flexible functional form in bond

risk characteristics including bond duration, credit rating, historical yield change volatility, bond

liquidity, and the optionality-induced yield spread adjustment for callable bonds. The return factor

model embeds the residual from the valuation model as a mispricing factor while capturing the

stronger co-movements between bonds from the same industry, similar rating classes, and similar

duration segments, and accounting for differential pricing of bond return risk, liquidity cost, and the

optionality exposure. Historical analysis over the past two decades shows that the valuation model

can explain the cross-sectional bond yield variation very well, and the value-investing portfolio

constructed from the return factor model generates highly positive average excess returns with low

risk.
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1. Introduction

Systematic value investing in any market relies on two crucial elements: (i) a valuation framework

that effectively identifies misvaluation opportunities and (ii) a return factor structure that accurately

accounts for the return covariance structure and allows investors to construct well-diversified port-

folios targeting the mispricing opportunities without taking on systematic risk exposures. This

paper examines the value investing opportunities and the return factor structure in the U.S. corpo-

rate bond market.

Based on U.S. corporate bond transaction data over the past two decades, we begin by analyzing

the bond yield and return behavior along different risk dimensions. It has been well established

since Fama and French (1993) that term risk and credit risk represent two major risk sources of

corporate bonds. We show that the average bond yield increases strongly with increasing bond

duration and declining credit rating. The higher yield at longer duration reflects the compensation

for bearing greater price sensitivity to the underlying yield variation, whereas the yield increase

with declining credit rating reflects the risk premium for bearing a greater likelihood of default.

The volatility estimates on the ex post bond excess returns over the next month also increase

strongly with increasing bond duration and declining credit rating, and the mean bond excess

returns increase largely in proportion to the volatility estimates.

Bond duration and credit rating also capture co-movement differences between different bond

issuances. We show that the return correlation estimates between bond pairs decline with increas-

ing distance in bond duration and credit rating between the pairs. The declining correlation pattern

reflects a multi-dimensional return factor structure along the two risk sources.

In addition to the two structural risk measures, we also construct a historical yield change

volatility estimator to capture the interest-rate risk variation not fully reflected in bond duration
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and credit rating. Even at the same duration and credit rating, the average bond yield level and

the ex post return volatility estimates both increase strongly with the historical volatility estimator.

The average excess returns also increase in proportion to the return volatility estimates.

As trading volume and volatility vary strongly across different bond issuances, so are the liq-

uidity costs for trading these bonds. We construct a liquidity cost measure for each bond based on

its historical yield change volatility and its average trading volume. Bonds with higher liquidity

cost have higher average yields, reflecting the well-documented liquidity discount on bond valu-

ation.1 Bonds with higher liquidity cost also earn higher average excess returns, but the higher

average excess return mainly reflects compensation for higher return volatility.

A large proportion of corporate bonds have call provisions (Becker, Campello, Thell, and Yan

(2024)). We propose a binomial tree model on the yield of the non-callable component of a callable

bond to quantify the value of its call provision. We use the yield spread between the callable bond

and its non-callable component to measure the value contribution of the call provision. We also

construct an optionality exposure to capture the sensitivity of the embedded call option to the

underlying yield volatility variation. We find that the average bond excess return per unit risk in-

creases strongly with the optionality exposure, suggesting that the optionality exposure represents

a distinct risk source that demands a higher risk premium per unit risk.

Based on the documented evidence, we propose a bond valuation model to explain the cross-

sectional bond yield variation as a function of the bond’s major risk characteristics, including bond

duration, credit rating, yield-change volatility, liquidity cost, and the option-induced yield spread

for callable bonds. We adopt a flexible local linear functional form to allow the dependence struc-

ture to vary conditionally with the risk levels. Model estimation shows that the valuation model

1See, for example, Houweling, Mentink, and Vorst (2005), Nashikkar and Subrahmanyam (2007), Covitz and
Downing (2007), Chen, Lesmond, and Wei (2007), Longstaff, Mithal, and Neis (2005), Bao, Pan, and Wang (2011).
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explains the cross-sectional yield variation very well. The cross-sectional R2 estimates average at

95.65%, and vary within a narrow range between 91.77% and 97.86%. The average explanatory

power remains stable across different industry groups, rating classes, and bond durations.

Inspecting the conditional loading coefficient estimates shows that on average, corporate bond

yield increases with increasing bond duration, deteriorating credit rating, increasing historical yield

change volatility, increasing trading cost, and increasing optionality exposure for bonds with call

provisions. However, the relations are not linear, but varying substantially across different regions

of the risk characteristics. The dependence on credit rating becomes increasingly stronger as rating

deteriorates, but the dependence on duration declines at longer durations, leading to a convex

relation with credit rating but a concave relation with duration. The yield dependence on the

historical volatility estimator is also very strong and increasingly so at higher volatility levels.

By comparison, once controlled for the other risk sources, the liquidity contribution to the yield

variation becomes much smaller, similar to literature findings in Longstaff, Mithal, and Neis (2005)

and Covitz and Downing (2007).

The valuation model decomposes the yield of each bond into two components: a fair value

component reflecting the contribution from its major risk exposures and an idiosyncratic residual

component representing the potential mispricing opportunity. We form quintile portfolios based

on the residual yield, and show that the different quintile portfolios have similar average risk char-

acteristics, but the average excess return per unit risk increases strongly with the residual yield

quintile. The quintile spread portfolio that is long the underpriced fifth quintile and short the over-

priced first quintile generates high average excess return with low risk, highlighting the strong

predictability of the residual yield on future bond returns.

With the valuation model identifying the mispricing opportunities, we propose a return factor
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model to capture the bond return covariance structure. The return factor model captures the pre-

dictive contribution of the residual yield as a bond mispricing factor while also accounting for the

differential pricing of bond return risk, the optionality exposure, and the liquidity cost. In addi-

tion, the model includes a multi-dimensional loading matrix to capture the stronger co-movements

between bonds from the same industry and similar duration buckets and rating classes.

The return factor model can explain an average of over 40% of the bond excess return variation

over the next month. Within the factor structure, the multi-dimensional loading matrix explains

an average of 26% of the return variation. It represents a major source of the model’s explanatory

power, especially during calm market conditions. Meanwhile, the historical return risk factor

contributes to an average of 12% of the return variation, and becomes particularly important during

market turmoils. The variance contributions from the optionality exposure and the liquidity cost

are small and vary strongly over time. By comparison, the mispricing factor explains a small but

stable percentage of the return variation across all sample periods.

Under such a return factor structure, the slope coefficient on the mispricing factor represents the

future excess return on a statistical arbitrage value-investing portfolio that targets a unit exposure

to the bond misvaluation opportunity while being neutral to all systematic risk exposures. The

value-investing portfolio generates high average excess returns with low return volatility, leading

to extremely high risk-adjusted investment performance. The portfolio generates an information

ratio estimate of 4.03 with equal dollar weighting. When we perform weighted estimation on the

return factor model accounting for the historical return risk difference and the stronger correlation

between bonds from the same issuers, the value-investing portfolio becomes even better diversified,

with the information ratio increasing to 7.23.

This paper contributes to the literature in three major areas. First, we propose a decentralized
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binomial tree model on the yield of the non-callable component of each callable bond to quantify

the contribution of the bond’s embedded optionality. Unlike instantaneous interest rate tree models

(e.g., Hull and White (1996)) that are calibrated to the volatility of a reference interest rate series

regardless of which bond the tree prices, our approach fully accounts for the yield volatility dif-

ference for different corporate bonds, recognizing that the option value on bonds with higher yield

volatilities can be much higher than that computed from a reference interest rate tree.

Second, we propose a statistical valuation model on corporate bonds that can effectively iden-

tify bond mispricing opportunities based on the bonds’ structural risk characteristics and historical

risk behaviors, but without delving into the fundamentals of the issuing company. For public com-

panies, fundamental information from financial statements have been shown to be informative on a

company’s credit risk and its bond behaviors.2 Our valuation model takes the average credit rating

from rating agencies as inputs, but without analyzing fundamental data directly ourselves, allow-

ing us to analyze the universe of corporate bonds issued by both public and private companies.

Meanwhile, compared to simple regression analysis (e.g., Houweling and Van Zundert (2017) and

Israel, Palhares, and Richardson (2018)), our valuation model adopts a flexible functional form to

capture conditionally varying dependence structures on the risk characteristics and generates very

high explanatory powers on the cross-sectional bond yield variation.

Third, we propose a return factor structure that captures not only the return risk, optional-

ity exposure, and liquidity differences across different bond issuances, but also the stronger co-

movements between bonds from the same industry, similar rating classes, and similar duration

segments. It is well-known that corporate bonds are exposed to credit risk and term risk, but the

2See classic statistical and structural models that link a company’s default probability to its fundamental informa-
tion, e.g., Altman (1968), Merton (1974), Black and Cox (1976), Geske (1977), and Leland (1994). Several recent
empirical studies explain the bond behavior on public firms with firm fundamental data, e.g., Collin-Dufresne, Gold-
stein, and Martin (2001), Eom, Helwege, and Huang (2004), Correia, Richardson, and Tuna (2012), Bai and Wu
(2016), Kelly, Palhares, and Pruitt (2023), and Wu and Xu (2023).
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dimensionalities of the underlying risk sources are less discussed. The literature often uses statis-

tical beta estimates on a term spread and a default spread to capture the risk exposures, or directly

uses credit rating and bond duration as risk characteristics, largely reducing each risk source to a

single dimension. We show that the cross-correlation estimates between bond returns decline with

increasing distances in both bond duration and credit rating, manifesting a high-dimensional risk

structure along both the term structure and the credit risk. To capture this behavior, our return

factor model embeds a high-dimensional loading matrix to capture the exposures to the different

industry groups and to different points on the duration and credit rating spectrum.

Finally, our analysis shows that several bond risk characteristics including duration, credit

rating, historical volatility, and liquidity cost can all differentiate bond return risk, but they are

not as effective in identifying superior risk-adjusted investment opportunities. The average excess

returns on bond portfolios targeting different levels of these risk measures tend to vary largely in

proportion to the portfolio’s return risk level, leading in small and non-monotonic variations in the

information ratio estimates. Through the bond valuation model, we identify highly profitable bond

misvaluation opportunities. Embedding such opportunities into the return factor structure produces

well-diversified and extremely well-performing value-investing portfolios.

A long list of studies strive to identify “priced” risk factors that can directly predict bond risk

premium variations.3 Among them, Dickerson, Mueller, and Robotti (2023) examine the pricing of

a number of commonly proposed corporate bond factors and find them to be statistically and eco-

nomically insignificant, except for the value-weighted bond market factor. van Binsbergn, Nozawa,

and Schwert (2023) highlight the risk premium behavior differences of corporate bonds when the

excess returns are constructed over duration-matched Treasury returns instead of short-term Trea-

3Prominent examples include Gebhardt, Hvidkjaer, and Swaminathan (2005), Jostova, Nikolova, Philipov, and
Stahel (2013), Cao, Goyal, Xiao, and Zhan (2023), van Binsbergn, Nozawa, and Schwert (2023), Dickerson, Mueller,
and Robotti (2023), Dang, Hollstein, and Prokopczuk (2023), Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023),
Kelly, Palhares, and Pruitt (2023), and Dickerson, Robotti, and Rossetti (2024).
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sury bill rates. Kelly, Palhares, and Pruitt (2023) employ an instrumented principal components

analysis (IPCA) to combine a long list of company and bond characteristics to explain the corpo-

rate bond return variation. They show that five principal factors can explain a large proportion of

the bond return variation, and that a systematic long-short strategy based on the identified expected

returns from the risk factors can generate high risk-adjusted investment returns. Compared to the

literature focus on priced risk factors, this paper focuses more on identifying misvaluation oppor-

tunities through a bond valuation model construction. Our proposed return factor structure is less

for identifying priced risk factors but more for accurately capturing the bond covariance structure

so that we can construct well-diversified value investing portfolios without biases in any industry,

duration, or credit rating segments, or systematic exposures to any major risk dimensions.

The rest of the paper is organized as follows. Section 2 describes the sample construction

procedure and documents the bond yield and return variation along the major risk dimensions.

Section 3 proposes a bond valuation model to explain the cross-sectional yield variation as a flexi-

ble function of the bond’s key risk characteristics. Section 4 proposes a bond return factor model to

capture the bond return covariance structure while embedding the yield residual from the valuation

model as a mispricing factor. Section 5 concludes.

2. Summary corporate bond behaviors

We obtain data from the Trade Reporting and Compliance Engine (TRACE), a comprehensive

source of transaction-level data for U.S. corporate bonds. In January 2001, the Securities and

Exchange Commission (SEC) took the initiative to enhance post-trade transparency in the U.S.

corporate bond market by mandating the National Association of Security Dealers (NASD) to

obtain transaction-level data for publicly issued corporate bonds. This led to the advent of TRACE
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in July 2002. Since then, bond dealers have reported all trades associated with publicly issued

corporate bonds to the NASD, which then makes the trade information public.

2.1. Sample construction

Our sample covers the U.S. corporate bond transactions from July 2002 through March 2022. We

obtain bond characteristics such as bond type, maturity date, coupon rate, credit rating, and any

embedded optionality information from the Mergent fixed-income securities database (FISD). We

merge TRACE data with FISD to construct a comprehensive bond dataset that comprises corporate

bond transactions along with bond features.

We apply the following filters to the TRACE data: (1) Restrict the data to bonds of issuers

whose country of domicile is the U.S.A. (2) Remove bonds issued through private placement, un-

der the 144A rule, or with non-U.S. dollar denomination. (3) Remove bonds labeled as mortgage-

backed, asset-backed, puttable, exchangeable, convertible, or equity-linked. (4) Retain only fixed-

rate coupon or zero-coupon bonds with the principal amount of $1,000. (5) Remove transac-

tions that are canceled, corrected, or reversed. (6) Remove transactions identified as when-issued,

locked-in, or with a special price indicator. (7) Remove transactions with par value volume less

than $1,000. (8) Remove zero-coupon bonds trading above par. (9) Remove transactions that have

more than a three-day settlement before September 5, 2017 and more than a two-day settlement

after.4

Some researchers also filter the trades based on the transaction price or trade size. We only

exclude odd lot trades below $1,000 that seem to be outliers in pricing. Historically, there has

4On September 5, 2017, the SEC reduced the settlement cycle for U.S. corporate bonds from T + 3 to T+2. Prior
to that date, approximately 98% of the trades settled in 3 business days. Once the settlement cycle was reduced, about
95% of the trades in our sample showed settling in 2 business days. On May 28, 2024, the SEC further reduced the
settlement cycle to from T+2 to T+1.
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been a substantial difference in the pricing available to institutional and retail investors (Edwards,

Harris, and Piwowar (2007)). Over the past decade, with the advent of algorithmic trading and the

introduction of fixed-income exchange-traded funds (ETFs), there has been an increase in sources

of liquidity provision in the U.S. corporate bond market. According to the Securities Industry and

Financial Markets Association (SIFMA), as of 2022, about 40% of investment-grade and 30% of

high-yield corporate bonds volume are traded electronically. With algorithmic trading, trade size

has become much less differentiating of the pricing behaviors or investor types.

TRACE reports the clean price for each transaction, which we use to estimate the daily volume-

weighted average price (VWAP) for each bond. The VWAP, in turn, is used to estimate the yield

to maturity and monthly returns. We perform valuation analysis on the bond yield once a month,

and examine the bond return behaviors over the next month. If a trade exists for a bond in the last

5 business days of a month, we take the VWAP on the last of those 5 days as the month-end price.

These month-end prices are used to estimate monthly returns after accounting for accrued interest

and coupon payments. Specifically, at each month end t for each bond i, its annualized excess

return over the next month is constructed as,

ri,t+1 =
365

ni,t+1

(
Pi,t+1 +AIi,t+1 +Ci,t+1

Pi,t +AIi,t
−1
)
− r f ,t , (1)

where Pi,t denotes the clean VWAP price of the bond i at the end of month t, AIi,t denotes the

accrued interest, Ci,t+1 denotes the coupon payment, if any, during the following month t +1, and

ni,t+1 denotes the number of days in between the two month ends (t, t + 1). We annualize the

monthly return and deduct the one-month Treasury bill rate r f ,t to construct the annualized excess

return over the next month. The bill rate is obtained from Ken French’s data library.

In addition to the pricing information, we also obtain the industry classification and credit
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rating information for each issue from Mergent FISD. Most of the bond issuances are classified

into three broad industry groups: industrials, financials, and utilities. We exclude bond issuances

that are either without the industry information or fall out the three industry classifications.

We make use of credit ratings assigned by both S&P and Moody’s, the two largest and most

widely followed rating agencies in the U.S. Each letter rating is assigned a numeric value ranging

from 1 for AAA, 2 for AA+, to 21 for C. For any issue at a point in time, if ratings from both

agencies are available, we assign the mean of the two ratings to the issue. If only one of the two

ratings is available, that credit rating is assigned to the issue. We filter out bond issuances without

credit rating information.

Finally, we exclude bonds from our analysis that do not have enough trading information for

the construction of the next month return, bonds with less than one year to maturity, and bonds

with negative yields or yields greater than 30%. Bonds with extremely high yields are often in

the process of going through financial distress, adding great uncertainty to trading execution and

investment. Even with this filtering, our selected sample still includes 82 observations where the

bonds are defaulted or defeased during the following month. For these observations, we approxi-

mate the next month return by assuming a 40% recovery.

The filtering process generates a total of 1,224,423 bond-month observations, including 36,102

bonds issued by 3,814 unique issuers from July 2002 to March 2022. The total number of selected

bonds at each month ranges from a low of 2,936 to a high of 6,666 with an average of 5,188 bonds.

Out of the pooled sample, 51% are from industrials, 38% from financials, and 11% from utili-

ties. Figure 1 plots the pooled distribution of the bond rating in panel A, estimated on the numeric

rating with a Gaussian kernel. The distribution peaks around 8, corresponding to BBB+ rating.

Panel B plots the pooled distribution of the bond duration, which represents the value-weighted
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average maturity of the bond’s cash flows. The duration distribution is heavily skewed with a long

right tail. The distribution peaks around 4 years, with a secondary peak around 12 years. The

maximum duration reaches 32 years.

[Figure 1 about here.]

With the constructed sample, we document the summary behaviors of corporate bond yields

and bond excess returns along their major risk dimensions. The documented evidence serves as

the starting point for developing the corporate bond valuation model and the return factor structure

in the latter sections. We consider both structural risk characteristics such as bond duration and

credit rating, as well as statistical volatility and liquidity cost estimates. In addition, as a large

proportion of the corporate bonds include call provisions, we develop an algorithm to quantify the

value contribution and the optionality risk exposure of the embedded call provision and examine

their impacts on bond yield and bond excess returns.

2.2. Bond behavior variation across duration and credit rating

Term risk and credit risk represent two major structural risk sources for corporate bonds. To

examine how the corporate bond yield and return behavior vary across different maturity buckets

and rating classes, at each month, we construct bond portfolios targeting different maturity levels

and credit rating classes. We use the bond duration (m) as a measure of the value weighted maturity

of each bond’s cash flows and we use the numeric values from 1 to 21 to represent the credit rating

(c) variation from AAA to C. For each portfolio k that targets a certain duration and credit level
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(mk,ck), we construct the weighting on each bond i in the universe with a bivariate Gaussian kernel,

wik = exp
(
−(lnmi − lnmk)

2

2h2
m

− (ci − ck)
2

2h2
c

)
, (2)

where (hm,hc) denote the bandwidths that control the speed of weighting decay with the bond’s

distances to the target duration and numeric rating, respectively. We set the bandwidth on the

numeric rating to hc = 3 to cover a full letter grade. As the duration distribution is heavily skewed

to the right and the information along the term structure tends to dissipate exponentially (Calvet,

Fisher, and Wu (2018)), we define the duration distance in the log space and set the bandwidth to

hm = ln1.5, corresponding to a duration distance ratio of 1.5. We normalize the weighting on each

portfolio so that the portfolio weights sum to one dollar. At each month, for each bond portfolio,

we compute its average bond yield and its annualized excess return over the next month.

Table 1 reports the portfolio’s average yield and the summary statistics of the portfolio’s excess

returns over the next month, including the annualized mean excess return (Mean), the annualized

return volatility (Volatility), and the annualized information ratio (IR) constructed as the ratio of

the mean excess return to the return volatility.

[Table 1 about here.]

Panel A reports the bond portfolio behaviors that target different durations while holding the

target credit rating fixed at BBB+, the mode of the pooled credit rating distribution. Duration

measures not only the average maturity of the bond’s cash flows, but also the magnitude of bond

return variation per unit variation in the bond’s yield, i.e., the bond’s interest-rate sensitivity. The

average bond yield increases strongly with duration. This positive average slope against bond

duration is often referred to as the term risk premium, reflecting the compensation to longer-term
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bondholders for bearing greater price sensitivity to interest-rate changes.

Because of the increased interest-rate sensitivity, the ex post bond return volatility estimates

increase strongly with the target duration. The mean excess return of the portfolio also increases

strongly with duration, largely in proportion to the increase in the return volatility estimates. The

information ratio estimates do not vary monotonically with the target duration. They are moder-

ately higher at intermediate maturities, and lower at the two ends of the duration spectrum.

Panel B reports the bond portfolio behaviors that target different credit rating while holding

the target duration fixed at four years at the mode of the pooled duration distribution. The average

bond yield increases strongly with deteriorating credit rating. The positive yield spread between

low and high credit rating classes is often referred to as the credit risk or default risk premium,

reflecting compensation for bearing a greater likelihood of default.

The bond return volatility estimates increase strongly with declining credit rating, suggesting

that the bond portfolios with higher credit risk also experience larger return volatility. The mean

excess returns of the portfolios again increase largely in proportion to the return volatility estimates.

Historically, researchers have noticed that bonds who had recently fallen from investment grade to

high yield rating, i.e., “fallen angles,” tend to generate higher risk-adjusted returns on average due

to forced selling activities (Ambrose, Cai, and Helwege (2008)). Potentially related to this finding,

the information ratio estimates in panel B are the highest for portfolios targeting ratings BBB to

BB, but become somewhat lower at the two ends of the rating spectrum.

In addition to differentiating bond yield and return risk, duration and credit rating can also

differentiate co-movements between different bond issuances. Carr and Wu (2023) show that the

correlations between changes in swap rates decline with the absolute distance in swap maturities.

We anticipate similar correlation dependences of corporate bond returns on the duration distances
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between the bond issuances. To examine this hypothesis, we measure the cross-correlations of

the excess return series between the bond portfolios targeting different duration levels at the fixed

rating class of BBB+. Figure 2 plots in panel A the pairwise correlation estimates as a function

of the absolute distance in the natural logarithm of the target durations of the portfolios. At zero

duration distance, the correlation of a return series is 100% with itself. As the duration distance

increases, the correlation estimates decline. In the plot, we have created bond portfolios targeting

durations from one to 32 years, covering the full duration range of the data sample. The maximum

distance is between the 32-year duration portfolio and the one-year duration portfolio, with a log

duration distance of 3.5 times. The two return series have the lowest correlation estimate at 55.5%.

[Figure 2 about here.]

We hypothesize that credit rating can also differentiate co-movements between bond issuances.

To examine this hypothesis, we measure the return correlation between bond portfolios at differ-

ent rating classes targeting a fixed four-year duration. Panel B of Figure 2 plots the correlation

estimates against the absolute numeric rating distance. The correlation estimates decline sharply

as the numeric rating distance increases. At the largest distance of 20 between the bond portfolio

targeting a numeric rating of 21 and the portfolio targeting a numeric rating of 1, the correlation

estimate between the two return series is merely 37.8%.

It is well-known that corporate bonds are exposed to credit risk and term risk; however, the

dimensionalities of the underlying risk sources are less discussed. Researchers often use beta

estimates to a term premium and a default premium to capture the risk exposures, or directly use

the numeric credit rating to proxy the credit risk exposure and duration to proxy the term risk

exposure. In either case, the practice largely reduces each risk source to a single dimension. Yet,

the term structure literature has long recognized the multi-dimensional nature of the interest rate
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term structure variation (e.g., Litterman and Scheinkman (1991) and Dai and Singleton (2000)).

The fact that the correlation estimates decline with increasing duration distance is a manifestation

of such a multi-factor structure. Similarly, the fact that the correlation estimates decline with

increasing rating distance also implies a multi-factor structure along the credit rating dimension. In

building a corporate bond return factor model, one must fully account for the high-dimensionalities

along the term and credit risk dimension to accurately capture the return covariance structure.

2.3. Historical interest-rate volatility

Duration and credit rating represent structural measures of bond risk. We can also directly measure

the risk behavior of a bond based on its historical behaviors. At each month t and for each bond

issuance i, we construct a historical volatility estimator (vt,i) on its monthly yield changes with a

12-month historical rolling window. For issuances without a full 12-month history, we pool the

historical yield changes over the past 12 months over the whole sample and construct a weighted

variance estimator targeting the duration, rating, and yield level of the bond issuance in question.

The pooled estimator puts more weight to observations ( j) closer to the target bond issuance (i) in

terms of duration, rating, and yield level via a trivariate Gaussian kernel,

w ji = exp

(
−
(lnm j − lnmi)

2

2h2
m

−
(c j − ci)

2

2h2
c

−
(y j − yi)

2

2h2
y

)
, (3)

where the bandwidths on duration and rating distances are set the same as before and the bandwidth

on the yield distance is set to default choice (Simonoff 1996). We take a weighted average of the

bond’s own estimator and the pooled estimator, where the weight on its own estimator increases

linearly with the number of historical yield change observations on the bond over the past 12

months. The weight reaches 100% on its own estimator when the bond has a full 12-month history.
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The pooling estimation resolves the lack of history issue for a large proportion of the bonds.

To examine whether the volatility estimator can capture different bond behaviors beyond the

structural risk characterization with duration and credit rating, we form bond portfolios targeting

different percentile values of the volatility estimator at the 10, 25, 50, 75, and 90th percentile while

holding the target duration fixed at four year (m = 4) and the target rating fixed at BBB+ (c = 8).

For each target volatility percentile k, we construct the portfolio weight on each bond i according

to the following trivariate Gaussian kernel,

wik = exp
(
−(lnvi − lnvk)

2

2h2
v

− (lnmi − lnm)2

2h2
m

− (ci − c)2

2h2
c

)
, (4)

where the bandwidths on duration and rating distances are set the same as before and the bandwidth

on the volatility (hv) distance is set to default choice. The distribution of the volatility estimator

has a large right tail. We measure the volatility distance in the log space.

Table 2 summarizes the bond portfolio behavior in panel A. The time-series average of the

percentile values of the volatility estimator increases from 0.85% at the 10th percentile to 4.12%

at the 90th percentile. The average yield of the portfolio increases strongly from 3.45% at the 10th

percentile to 5.8% at the 90th percentile. Therefore, even within the same rating class and the same

duration bucket, the historical volatility estimator can further differentiate the bond yield behavior.

Bonds with higher historical volatility estimators tend to have higher yield levels.

The remaining columns of Table 2 report the summary statistics on the portfolio’s excess re-

turns over the next month. The ex post return volatility estimates of the bond portfolios tend to

increase with the ex ante historical yield change volatility estimates. The mean excess returns of

the bond portfolios increase largely in proportion to the return volatility estimates. The information

ratio estimates do not vary strongly or monotonically with the yield change volatility quintile.
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2.4. Liquidity cost

The U.S. corporate bond market has experienced tremendous growth during the past two decades.

According to statistics from SIFMA, the size of the market has doubled from $5.9 trillion in 2008

to $10.8 trillion in 2023. The average daily trading volume has grown from $14 billion in 2008 to

over $50 billion in 2024. Despite the rapid growth, the corporate bond market is still considered

illiquid relative to its equity and treasury counterparts. Not only do the trading activities vary

greatly across different bond issuances, but the market as whole has shown vulnerabilities during

time of crises when the market volatility spikes up (Lester (2021), Kargar, Lester, Lindsay, Liu,

Weill, and Zúñiga (2021)). This section examines how the liquidity of a bond issuance affects its

yield and return behavior.

The literature has proposed many different liquidity measures for a financial security. Funda-

mentally, the illiquidity of a security represents the cost of trading a certain amount of the security,

or equivalently the risk the liquidity provider faces during the time it takes to unload the position.

The risk increases with the volatility of the security, but declines with the trading volume because it

takes a shorter period of time to unload a position when the trading volume is higher. If one adopts

a volume-weighted trading (VWAP) strategy that takes a fixed proportion h of the market volume,

the time it takes to unload a certain size becomes proportional to the trade size as a fraction of the

market trading volume. Therefore, for a given trade size, a commonly used trading cost measure

is constructed to be proportional to the ratio of the security’s volatility forecast (vt,i) to the square

root of the security’s daily trading volume forecast (ut,i) (Grinold and Kahn 1999),

qt,i = vt,i/
√

ut,i. (5)

If we represent the daily trading volume in million dollars, 1/(hut,i) represents the fraction of a day
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it takes to unload a million dollars of the security if we follow a VWAP trading strategy that takes a

fixed fraction h of the market volume. As volatility scales with the square root of time, the ratio in

(5) captures the risk the liquidity provider faces during the time it unloads the position. In general,

the liquidity provider charges a premium in proportion to the risk she faces, whether in terms of

commission, bid-ask spread, or market impact. The measure in (5) is similar to the Amihud (2002)

liquidity measure, but with better risk interpretation and better matching of empirical evidence on

market impacts (Gatheral and Schied (2013)).

We construct the liquidity cost measure in (5) for each bond issuance at each month based on

the historical yield-change volatility estimator constructed in the previous section and the bond’s

average daily trading volume over the past 12 month. We form bond portfolios targeting different

percentile values of the liquidity cost measure at the 10, 25, 50, 75, and 90th percentiles while

holding the target duration fixed at four year (m = 4) and the target credit rating fixed at BBB+

(c = 8). For each target liquidity cost percentile k, we construct the portfolio weight on each bond

i according to the following trivariate Gaussian kernel,

wik = exp

(
−(lnqi − lnqk)

2

2h2
q

− (lnmi − lnm)2

2h2
m

− (ci − c)2

2h2
c

)
, (6)

where the bandwidths on duration and rating distances are set the same as before and the bandwidth

on the volatility (hq) distance is set to default choice. Similar to the weighting on volatility in (14),

we measure the liquidity cost distance in the log space.

Panel B of Table 2 summarizes the bond portfolio behavior at different liquidity cost per-

centiles. The first column reports the time-series averages of the liquidity cost estimate (q). In

constructing the measure, we represent the volatility estimator in annualized percentage points and

the average daily trading volume in million dollars. The average liquidity cost estimates increase
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from 0.35 at the 10th percentile to 7 at the 90th percentile. The liquidity cost increase can come

from an increase in volatility and/or a decline in trading volume.

As the liquidity cost increases, the average bond yield increases from 3.57% at the 10th per-

centile to 4.83% at the 90th percentile, reflecting the well-documented liquidity discount on bond

valuation. Furthermore, since the liquidity cost increase partially reflects an increase in yield

change volatility, the ex post return volatility estimators also become higher for portfolios with

higher liquidity cost. The average excess returns increase with the increased return volatility.

In the literature, several studies examine whether liquidity shocks are priced in corporate bond

returns.5 The statistics in panel B of Table 2 show that illiquid bonds are riskier and the average

excess returns are higher due to the increased risk; nevertheless, the average excess return per unit

risk, as measured by the information ratio, does not vary strongly or monotonically with liquidity.

2.5. Call provisions

A large proportion of corporate bond issuances are callable. The call provisions allow firms to

take advantage of early refinancing opportunities by calling existing bonds and issuing new debt

as yields drop.6 They can also help firms manage debt maturity (Xu (2018)), mitigate rollover

risk (Ma, Streitz, and Tourre (2023)), and prevent debt overhang in corporate mergers (Becker,

Campello, Thell, and Yan (2024)). The call provisions affect both the bond valuation and the bond

risk behavior in profound ways. First, as a callable bond can be decomposed into a non-callable

bond minus a call option, the call option reduces the bond value and increases the bond yield. Sec-

ond, the convex call payoff structure induces exposures to interest-rate volatility movement. This

5See for example, De Jong and Driessen (2012), Acharya, Amihud, and Bharath (2013), Lin, Wang, and Wu
(2011), Downing, Underwood, and Xing (2005), Dick-Nielsen, Feldhütter, and Lando (2012).

6See, for example, Merton (1974); Brennan and Schwartz (1977); Vu (1986); Mauer (1993); Longstaff and Tuck-
man (1994); Acharya and Carpenter (2002); Guntay, Prabhala, and Unal (2004); Jarrow, Li, Liu, and Wu (2010).
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optionality exposure represents a distinct risk source that can be priced differently from interest-

rate and credit risk.

To account for the optionality of a callable bond, the industry often starts with a reference

interest-rate curve stripped from either Treasury bonds or US dollar LIBOR/swap rates. An in-

stantaneous interest rate tree, e.g., Hull and White (1996), is constructed based on the volatility

estimate on the reference interest rate, and an option-adjusted spread is added as a parallel shift of

the reference interest rate curve to price a callable bond. This approach can work well with agency

bonds with small default probabilities, but it fails to account for the much higher yield volatility

for corporate bonds, especially for bonds at low rating classes.

In this section, we propose a binomial tree directly calibrated to the yield of the non-callable

component of a callable corporate bond, fully accounting for the yield volatility differences for

different bonds. Formally, to price a callable bond k at time t, we use yn
t,k to denote the yield on

the non-callable component of this bond, and vt,k the annualized volatility on the yield change. Let

(i, j) denote the node of the binomial tree on this non-callable bond yield at the ith time step and

the jth node from top to bottom. Starting at node (0,0) with the non-callable yield being yn
t,k for

this particular bond, the yield at the (i, j) node is constructed as

yi, j = yn
t,k +(i−2 j)vt,k

√
∆t, j = 0,1, · · · , i, (7)

where ∆t denotes the time step of the tree. The recombining tree has a step size of vt,k
√

∆t and

generates (i+1) nodes at the ith time step.

Since we only observe the callable bond price and not its non-callable component, we con-

struct the volatility estimator by pooling yield changes of all non-callable bonds during the past 12

months and applying the bivariate Gaussian kernel weighting in (2) to generate a weighted variance

20



estimator targeting the duration and credit rating of the bond in question.

At each node (i, j), we set its branching probability such that the present value of the future

cash flows from the non-callable bond at node (i, j) is equal to the probability-weighted present

values of the same future cash flows at its two branches discounted back by the yield at (i, j),

PVi(yi, j) = e−yi, j∆t (PVi+1(yi+1, j)pi, j +PVi+1(yi+1, j+1)(1− pi, j)
)
, (8)

where pi, j denotes the probability going from node (i, j) to its upper branch (i+ 1, j) and PVi(y)

denotes the time-i present value of the bond’s future cash flows evaluated on the yield y. When the

volatility estimate is large, the yield tree can become negative, at which node we value the bond at

zero yield and adjust the branching probability accordingly.

Compared to an interest-rate tree built on a reference interest-rate curve, which can be used to

price bonds with different maturities, coupons, and even different risk profiles with a parallel shift

of an option-adjusted spread, the yield tree in (7) is constructed specifically to price the particular

bond k at time t. The step size of the tree matches the estimated volatility level of the historical yield

changes of bonds at similar duration and rating classes. The branching probability is constructed

to match the pricing of the cash flows on this particular bond. We need to construct a separate yield

tree for each bond based on its own future cash flows and its own historical risk behavior. This

decentralized approach, similar to the decentralizing bond pricing of Carr and Wu (2023), allows

us to match the behavior of each bond without being tied to any particular interest-rate curve.

The call provisions of corporate bonds can take on different forms: make-whole, hybrid, or

fixed-price. Make-whole bonds are callable during the entire make-whole period, which typically

starts at or just after issuance and ends at or just before maturity (Powers and Sarkar (2013)). The

exercise price is determined by discounting the remaining cash flows of the bond at the treasury
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rate plus a small make-whole spread, which is typically 50 basis points or 15% of the at-issue credit

spread (Mann and Powers (2003b)). As the make-whole exercise price tends to be much higher

than the prevailing market price of a corresponding non-callable bond, it is rarely optimal for the

issuer to exercise the make-whole call provision from a purely pricing perspective. We hence

ignore the optionality of the make-whole provision. The hybrid bonds are structured as make-

whole bonds in the early part of their life and are then converted to fixed-price callable bonds,

typically after 50% of their life. The fixed-price bonds are callable based on a fixed schedule of

call dates and prices determined at the time of issuance (Powers (2021)).

The callable bonds can be called at different frequencies. A majority of them (88.6%) can be

called continuously within a specified call date range. The call dates can contain multiple entries

corresponding to call strike price changes. When the provision provides a single call date and a

single call strike, but with the frequency specified as continuous, the bond can be called at any

date between the listed single call date and the bond’s expiry at the same exercise price. Other call

frequency specifications include daily, monthly, quarterly, semi-annual, annual, every 2, 3, 4, or 5

years, and just once. We construct the tree with a time interval of half a month (∆t = 1/24). Both

daily and continuous call provisions are approximated with discrete call decision at the half-month

frequency.

We assume frictionless market and optimal call exercising, and set the callable bond value

equal to the non-callable bond value minus the call option value. The pricing involves an iterative

procedure: We start by setting the call option value to zero and setting the non-callable bond yield

to the callable bond yield. Under this initial guess, we construct the non-callable yield tree and

compute the call option. Then, we add the computed option value to the callable bond price to

generate a new non-callable bond price and a non-callable yield. We reconstruct the yield tree

based on the new yield estimate and iterate until convergence.
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Out of the 1,224,423 month-bond observations, 922,385, or 75% of them are flagged as callable.

Among them, 503,044 have fixed call strike prices and call dates for us to perform the option val-

uation, constituting 41% of the sample. The rest of the callable bonds are predominantly of the

purely make-whole type, which we assume zero optionality.

For each callable bond, once we compute its option value with the binomial tree, we estimate

the value contribution of the call provision with an option-induced yield spread,

st,k = yt,k − yn
t,k, (9)

with y being the callable bond yield and yn the yield of the corresponding non-callable component.

As the callable bond is valued as the non-callable bond minus the call option, a positive call option

value reduces the value of the callable bond and increases its yield. The yield spread captures the

call option’s value contribution in the yield space.

The convex payoff structure of the call option also induces exposures to interest-rate volatility

variation. We estimate the volatility sensitivity of the call option by shocking the volatility input

of the tree while keeping the yield of the non-callable bond component fixed,

gt,k =
c(vt,k + ε)− c(vt,k − ε)

2ε
, (10)

where c(vt,k) denotes the call option value as a function of the volatility input vt,k and ε denotes

a small volatility shock. We multiply the volatility sensitivity estimate (gt,k) by the yield-change

volatility estimator (vt,k) to approximate the different magnitude of the volatility shocks for differ-

ent bonds. We then scale the exposure by the callable bond price (Pt,k) to generate an optionality
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exposure measure (ot,k) matching the scale of the bond return construction

ot,k =
gt,kvt,k

Pt,k
. (11)

To examine how the call provision affects the bond valuation and the ex post bond return

behavior, at each month we form quintile portfolios based on (i) the option-induced yield spread

st,k and (ii) the optionality exposure ot,k. The yield spread represents the bond value contribution

in the yield space, whereas the optionality exposure captures the option’s return risk contribution.

Table 3 summarizes the quintile portfolio behaviors constructed based on both measures. The

quintile portfolios are formed within the subsample of callable bonds with fixed strike prices.

[Table 3 about here.]

The left side of the table under panel (i) reports the quintile portfolio behaviors constructed

based on the option-induced yield spread. Panel A reports the average yield spread and optionality

exposure of the quintile portfolios. The average yield spread increases from 44 basis points in

the first quintile to 2.77% in the fifth quintile. While the literature has repeatedly documented the

average yield differences between callable and non-callable bond,7 our binomial tree estimation

shows that depending on the particular structure of the call provision and the volatility of the

underlying yield, the option-induced yield spread can vary greatly across the different callable

bonds. As the value contribution increases through the quintiles, the average optionality exposure

also shows a moderate increase.

Panel B reports the time-series averages of the quintile portfolio’s summary characteristics,

7See, for example, Kish and Livingston (1993); Mann and Powers (2003a); Jameson, King, and Prevost (2021);
Mann and Powers (2003b); Mann and Powers (2003a); Powers and Tsyplakov (2008); Park and Clark (2015); and
Jameson, King, and Prevost (2021).
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including the average rating, duration, and yield level. The average numeric rating increases with

the quintile whereas the average bond duration declines. The average yield level stays roughly the

same across the quintiles, even though a larger proportion of the yield in the higher quintiles comes

from the option value contribution.

Panel C reports the summary behaviors of the quintile portfolio’s excess returns over the next

month. The mean excess return declines with the quintile, so does the return volatility estimates.

As the yield spread increases across the quintiles, the call value becomes larger and the call option

is likely to become closer to be in the money and to be called. As such, the effective duration, and

accordingly the exposure to interest-rate and credit risk, becomes smaller, leading to lower return

volatility estimates. Nevertheless, although the yield spread captures the value contribution of the

call provision, it is not an effective measure of the risk exposure induced by the call provisions.

The cross-quintile variation of the information ratio estimates does not show any clear pattern.

The right side of the table under panel (ii) summarizes the behavior of the quintile portfolios

constructed on the optionality exposure to the interest-rate volatility variation. The average option-

ality exposure increases from 0.27% at the first quintile to 1.08% at the fifth quintile. The yield

spread does not vary monotonically with the optionality exposure, highlighting the fact that the

variation of the value contribution can be quite different from the optionality exposure. In general,

the value of a call option is higher when it is more in the money, whereas the volatility sensitivity,

or the optionality exposure, is high when the option maturity is long and the option is close to

being at the money.

Both the average numeric rating and the average bond duration increase with the optionality

exposure. The bond yield also becomes higher at the higher quintile due to the higher credit

and term risk. Most striking is the quintile portfolio’s excess return behavior. As the optionality
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exposure increases, the mean excess return increases strongly from −0.26% to 10.15% per annum.

The average excess return per unit risk, or the information ratio, also increases strongly with the

optionality exposure, from −0.03 at the first quintile to 0.7 at the fifth quintile. Therefore, different

from term risk, credit risk, and the statistical volatility and liquidity cost estimates, which can all

differentiate bond return risk but cannot differentiate the average excess return per unit risk in a

monotonic pattern, the information ratio estimates show a strong monotonically increasing pattern

with the optionality exposure.

The fact that the average excess return per unit risk increases monotonically with the optionality

exposure suggests that the optionality exposure, or the volatility risk, is indeed priced differently

from the interest-rate risk and the credit risk. In particular, the embedded short optionality expo-

sure in the callable bonds generates a higher risk premium per unit risk, in line with the general

observation that investors are willing to pay for positive optionality.8

3. A yield model of bond valuation

Based on the evidence documented in the previous section, we propose a corporate bond valuation

model, which represents the value of a corporate bond in the yield space and models the bond yield

as a flexible function of its main risk characteristics,

yt = ft(ct ,mt ,vt ,qt ,st)+ et , (12)

8The most direct evidence is the observed negative variance risk premium in the stock index options market (Carr
and Wu (2009)). Through a joint analysis of stocks and corporate bonds within a structural framework, Wu and
Xu (2023) identify a strongly negative risk premium in the embedded optionality of stocks and bonds, the absolute
information ratio of which is higher than that of the directional firm risk exposure. Several studies also find that
stocks with lottery-like payoffs are priced more expensively, e.g., Barberis and Huang (2008), Kumar (2009), Conrad,
Kapadia, and Xing (2014), and Eraker and Ready (2015).
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where yt denotes an (Nt × 1) vector of bond yields at month t with Nt being the size of the bond

universe at time t. The model explains the cross-sectional variation of the corporate bond yields

with the corresponding variations in the major risk dimensions: credit rating ct , duration mt , histor-

ical yield change volatility vt , liquidity cost qt , and the option-induced yield spread st for callable

bonds. Rating and duration capture the structural risk characteristics of a bond. The historical

volatility estimator captures the interest-rate risk of a bond not fully reflected in its duration and

credit rating. The liquidity cost measure accounts for the idiosyncratic liquidity difference of the

different issuances. For callable bonds, we estimate a yield spread induced by the embedded call

provision through a binomial tree model. Adjusting for this option-induced yield spread makes the

bond yields more comparable across bonds with different call value contributions.

We apply a flexible function form ft(ct ,mt ,vt ,st) to accommodate the potentially nonlinear

dependence structures on the risk characteristics. Specifically, at each month t, for non-callable

and pure make-whole bonds, we estimate a local linear cross-sectional relation between the bond

yields and their numeric rating, duration, volatility, and liquidity cost estimates,

yt = [1,ct ,mt ,vt ,qt ]b(ct ,mt ,vt ,qt)+ et . (13)

The relation is estimated repeatedly for each bond k with a weighted regression, where the weight-

ing on each data point i is constructed with a multivariate independent Gaussian kernel,

wn
ik = exp

(
−(ci − ck)

2

2h2
c

− (lnmi − lnmk)
2

2h2
m

− (lnvi − lnvk)
2

2h2
v

− (lnqi − lnqk)
2

2h2
q

)
. (14)

The distributions of the volatility and liquidity cost estimators have long right tails. To increase

the numeric stability for the regression at the sparsely populated right tail region, we winsorize the

volatility and liquidity cost estimates at their 99th percentile and build their distances in the log
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space. We set the bandwidth on rating and duration the same as before, and the bandwidths on

the log volatility and liquidity cost distance at three times the default choice. A smaller bandwidth

choice allows the model to be more tuned to the local features whereas a larger bandwidth smoothes

out more of the data noise. Our relatively conservative bandwidth choice achieves reasonably good

pricing performance while also maintaining pricing stability. Investors can tune the bandwidth

choice for their desired tradeoff between flexibility and stability.

For fixed-price and hybrid callable bonds, we expand the local linear regression to include the

option-induced yield spread as an additional explanatory variable,

yt = [1,ct ,mt ,vt ,qt ,st ]b(ct ,mt ,vt ,qt ,st)+ et , (15)

where the weighting kernel is also expanded to include the distance in the yield spread,

wc
ik = wn

ik exp
(
−(ln(1+ si)− ln(1+ sk))

2

2h2
s

)
. (16)

Similar to volatility and liquidity cost, we winsorize the yield spread estimate at its 99th percentile

and build the spread distance with a displaced log transformation ln(1+ s). The transformation

stays at zero when the yield spread is zero, but tempers the magnitude when the spread estimate

becomes large, thus effectively increasing smoothing at the sparsely populated right tail region.

We set the bandwidth hs on the yield spread distance to three times the default choice.

3.1. Explanatory power

We leave the first 12 months of the sample for constructing the volatility and liquidity cost estima-

tors and start the yield model estimation in July 2003 for a total of 224 months. At each month, we
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construct a cross-sectional R2 measure as one minus the ratio of the mean squared pricing error to

the cross-sectional variance of the bond yield. Table 4 reports in the first row of entry (under “All”)

the time-series statistics of the R2 estimates. The R2 estimates average at 95.65%, and vary within

a narrow range between 91.77% and 97.86%. The time-series standard deviation (SD) estimate is

very small at merely 1.24%.

[Table 4 about here.]

To examine the pricing performance variation across different segments of the data sample, we

also construct R2 estimates on different subsamples, each constructed as one minus the ratio of the

subsample’s mean squared pricing error to its mean squared yield deviation from the full-sample

mean. We first divide the sample into the three industry groups. Among them, the industrials sector

has the highest average R2 estimate at 95.75% with the lowest standard deviation at 1.19%. The

utilities sector has the lowest average R2 at 93.99% and the largest standard deviation at 3.09%.

We also divide the sample based on the credit rating into investment grade (IG) and high yield

(HY), with ratings of BBB- or higher classified as IG and with ratings of BB+ and lower classified

as HY. The HY sample has a higher average R2 estimate at 96.51% and a lower standard deviation

at 1.22%, whereas the IG bonds have an average R2 of 93.63% and a standard deviation of 1.89%.

Finally, we divide the sample based on the bond duration, with durations five years and lower

classified as short and durations higher than five years as long. The average R2 is higher for the

short-duration group at 96.63%, and lower for the long-duration bonds at 92.79%.

Across the different subdivisions, although the average R2 estimates do show some variations,

the variations are all small. The model performs reasonably well across all industry, rating, and du-

ration buckets. The uniformly well performance shows that with the flexible dependence structure,
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the chosen risk characteristics can adequately explain the cross-sectional yield variation.

3.2. Conditionally varying dependence structures

At each month, we perform the local linear regression repeatedly for each bond to generate the

valuation on that bond. Each regression uses all the observations but with different weightings

based on the distance of the risk characteristics to that target bond issuance. To understand how

the dependence structure varies with the risk characteristics, we perform the local linear regression

targeting different percentile values of each risk characteristic at the 10, 25, 50, 75, and 90th

percentiles. Since the conditional loading estimate on each risk characteristic depends on the

target levels of all other risk characteristics, the high dimensionality makes it difficult to present

the results. Nevertheless, we find that the conditional loading estimate on each risk characteristic

varies mainly with the level of that risk characteristic. Therefore, in Table 5, we summarize the

time-series averages of the conditional loading coefficient estimates by focusing on the variation of

each loading coefficient along the risk level of the corresponding risk characteristic while holding

the other risk characteristics at their median levels. Each panel reports the time-series averages

of the percentile values of one risk characteristic and the loading coefficient estimates on that

risk characteristic conditional on the risk characteristic at the different percentile levels, with βn

denoting the loading estimates on non-callable bonds and βc the estimates on callable bonds.

[Table 5 about here.]

The two sets of conditional loading estimates vary in similar patterns. The average magnitudes

of the loading estimates tend to be smaller for the callable bond sample than for the non-callable

bond sample. The call provision reduces the yield sensitivities to the risk characteristics.
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The average loading estimates on the numeric rating are all strongly positive, reflecting the

general observation that bond yields increase strongly with the numeric rating. Furthermore, the

average loading estimates become higher as the numeric rating becomes larger, reflecting a con-

vexly increasing relation between the bond yield and the numeric rating.

The average loading estimates on duration are also highly positive, reflecting the positive term

risk premium; nevertheless, the average loading estimates are more positive at shorter durations

than at longer durations, resulting in a concavely upward sloping average term structure.

The average loading estimates on the yield change volatility are increasingly positive as the

volatility estimates become larger, except at the 90th percentile where the average loading esti-

mates become somewhat lower, potentially due to data sparsity and increased smoothing. There-

fore, the historical volatility estimates can differentiate bond yields beyond bond rating and dura-

tion, especially when the volatility estimates are high.

The average loading estimates on the liquidity cost measure are small, suggesting that once

we control the bond risk along the other risk dimensions such as rating, duration, and volatility,

liquidity cost only has a small contribution to the yield level variation.

For callable bonds with fixed call prices, we use a binomial tree to estimate the value of the

call provision and quantify its value contribution with the option-induced yield spread. If the

non-callable component of a callable bond were priced similarly to other non-callable bonds with

the same credit risk, duration, and historical volatility levels, this yield spread would fully adjust

the callable bond yield to match the yield of other callable bonds, and the loading estimates on

the yield spread would average at one. The last panel in Table 5 shows that the average loading

estimates on the yield spread are all lower than one and decline with the percentile values of the

spread. The lower estimates can partially be driven by the errors-in-variables issue due to the noise
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in the estimated yield spread. In addition, the likelihood of being called before expiry effectively

shortens the bond’s duration and reduces the bond’s risk sensitivity.

3.3. Predicting future bond returns with the residual yield

Estimating the bond valuation model decomposes the yield of each bond into two components: (i)

a fair value component driven by credit, duration, volatility, liquidity, and the call provision for

callable bonds, and (ii) a residual yield component driven by possibly short-term supply-demand

distortions and other sources of mispricing. With a well-constructed bond valuation model, the

residual yield component can represent mispricing opportunities and the starting point for value

investing in the corporate bond market.

To examine the model’s potential for value investing, we sort the bonds into quintile portfolios

at each month based on the residual yield from the valuation model. Table 6 reports the time-

series averages of the bond characteristics of the quintile portfolios in panel A. The sorted yield

residual increases from an average of −60 basis points at the first quintile to 67 basis points at the

fifth quintile. The quintile portfolios have reasonably uniform distributions in terms of the average

fair yield, rating, duration, volatility, liquidity, yield spread, and the optionality exposure. The

balanced nature of the fair yield and the risk characteristics across the residual quintiles suggests

that the yield residual differences are not driven by systematic risk exposures but reflect mostly

idiosyncratic variations. More careful inspection shows that bonds at the first and the fifth quintile

tend to have higher fair yield, higher numeric rating, higher volatility, and higher liquidity cost

estimates. As such, the absolute magnitudes of the pricing errors in yields tend to be larger for

bonds with higher risks.

[Table 6 about here.]
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Panels B reports the summary statistics of the quintile portfolio’s excess return over the next

month, including the mean excess return (Mean), the Newey and West (1987) t-statistics on the

mean return (NW), the return volatility (Volatility), and the annualized information ratio (IR). The

average excess return increases monotonically with the residual yield quintile, from −0.41% at the

first quintile to 10.84% at the fifth quintile. The return volatility estimates are stable across the first

four quintiles, but become larger at the fifth quintile. The average excess return per unit risk, as

captured by the information ratio estimate, increases strongly and monotonically with the residual

yield quintile from −0.07 at the first quintile to 1.18 at the fifth quintile.

The investment return from a corporate bond can come from the carry of the yield itself and

the capital gain due to the change in the yield. Since the yield residuals are much smaller than the

fair yield level, the average carry contributions are strongly positive across all quintiles. As such,

for the first quintile portfolio to generate a negative average excess return, the average yield of

the portfolio must go up significantly to induce a large capital loss. Panel C of Table 6 reports the

average annualized yield change over the next month (Mean) for each quintile portfolio, the Newey

and West (1987)-t value (NW) on the mean yield change, and the annualized yield change volatility

(Volatility). As expected, when the residual yield is highly negative at the first quintile, the average

yield change is highly positive at 1.19% per annum, with strong statistical significance. As the

average residual yield becomes less negative in the second and the third quintiles, the average yield

change also declines and becomes less positive. When the average residual yield becomes positive

in the fourth and fifth quintiles, suggesting that the bond yields are higher than fair as determined

by the valuation model, the bond yield declines on average over the next month, leading to negative

average yield change estimates.

Inspecting the absolute magnitude of the mean yield changes shows that the yield reversal

behavior tends to be stronger in going up than going down. The average yield increase in the first
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quintile is much stronger than the average yield decline in the fifth quintile. The yield reversal at the

fifth quintile also experiences larger volatility, which contributes to the larger volatility estimate

for the quintile portfolio’s excess return. Still, the combination of the high carry with the yield

drop results in a very high average excess return for the fifth quintile, and a high information ratio

estimate despite the high return volatility.

In the last column of the table, we construct the high-minus-low (HL) quintile spread portfolio

by being long the underpriced bonds in the fifth quintile and short the overpriced bonds in the

first quintile. By partially canceling out the systematic risk exposures, the return volatility of the

quintile spread portfolio becomes much lower than the volatility of any of the quintile portfolios.

As a result, the quintile spread portfolio not only generates a highly positive average excess return,

but also with an extremely high t-value at 7.14 and a very high information ratio at 2.39.

Different from duration, credit, or volatility estimates, which can all differentiate bond return

risk but cannot differentiate the average excess return per unit risk in a monotonic pattern, the

residual yield does not bear any systematic risk exposures, but purely differentiates the mispricing

opportunities and strongly predicts future bond returns per unit risk.

4. A corporate bond return factor model

A bond return factor model can serve at least three purposes. First, the factor structure can identify

the major sources of co-movements so that the covariance of the return residuals from the model

becomes close to a diagonal matrix. Summarizing the co-movements via a parsimonious factor

structure reduces dimensionality and increases the robustness of the covariance matrix estimation.

Companies in the same industry share similar businesses and respond similarly to macroeconomic
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shocks. Therefore, as in classic equity return factor models, we propose to use industry dummy

variables to capture the stronger co-movements for bond returns within the same industry. Further-

more, our analysis has shown that bonds with similar durations and credit ratings tend to co-move

more strongly. To capture the covariance structure along the duration dimension, we choose a set

of pivot duration points at m = 1, 2, 4, 8, and 16 years, and construct loading functions for each

bond i to each duration pivot point k via a Gaussian kernel,

ωik(m) = exp

(
−(lnmi − lnmk)

2

2h2
m

)
, (17)

where the loading is 100% at the target duration and declines smoothly as the duration distance

to target increases. Similarly, to capture the covariance structure along the rating dimension, we

choose a set of pivot points at c = 3, 6, 9, 12, 15, and 18, and construct loading functions for each

bond i to each rating pivot point c j via a similar Gaussian kernel,

ωi j(c) = exp

(
−
(
ci − c j

)2

2h2
c

)
. (18)

Compared to the commonly used statistical beta estimates on term spread and default spread, which

effectively reduce each risk source to a single risk dimension, the loading matrices in (17) and (18)

capture the observed high-dimensional structure in each risk source. The construction converts the

three structural risk characteristics, i.e., industry, duration, and rating, directly into an exposure

matrix, alleviating the errors-in-variable issue in statistical beta estimates.

Second, the return factor structure can capture the cross-sectional variation in the risk mag-

nitudes of the underlying bond return. Data analysis has shown that the bond return risk varies

strongly with credit rating and duration, and that the historical bond risk behavior can also dif-

ferentiate bond yield and future bond return risk beyond those captured by rating and duration.
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Based on these observations, we propose to construct a smoothed return volatility estimator for

each bond by pooling the historical excess returns on all bonds over the past 12 months and apply-

ing weighting based on distances to the target bond in duration, rating, and yield level as in (3) for

the pooled yield-change volatility construction. The volatility estimator captures the bond return

risk variation across duration, rating, and yield level, while smoothing out the idiosyncratic noises

and resolving the lack of history issue for a large proportion of bonds.

Third, the factor structure can identify “priced” risk factors that explain the risk premium vari-

ation, the main focus of most academic studies. Our analysis has shown that the optionality ex-

posure for callable bonds represents a distinct risk source that demands higher risk premiums per

unit risk. We also include the liquidity cost measure in the return factor model to control for the

pricing of bond illiquidity. Most importantly, the yield residual from the bond valuation model

strongly predicts future bond returns without taking on systematic risk exposures. We include the

yield residual in the return factor model as a mispricing factor to explain the future bond return

variation due to the reversal of bond mispricing.

Formally, we construct the following bond return factor model structure,

rt+1 = ω(gt ,ct ,mt)φt+1 +vtψt+1 +otζt+1 +mqtγt+1 +metηt+1 + εt+1, (19)

where the model explains the cross-sectional variation of the bond excess return over the next

month (rt+1) with the following set of risk exposures and risk characteristics:

1. The high-dimensional loading matrix on industry, credit, and duration, ω(gt ,ct ,mt), to cap-

ture the stronger co-movements within the same industry group, similar credit rating classes,

and similar duration buckets. gt denotes an (Nt ×1) vector classifying the Nt bonds at each

month into the three industry groups: industrials, financials, and utilities. We first construct
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an (Nt × 3) industry dummy matrix based on the industry classification, and then construct

the joint loading matrix ω(gt ,ct ,mt) as the kroner product of the industry dummy matrix,

the duration loading matrix in (17), and the credit rating loading matrix in (18).

2. The historical return volatility estimator, vt , to capture the bond return risk variation across

rating, duration, and different yield levels.

3. The optionality exposure, ot , to capture the market pricing of the optionality exposure to

interest-rate volatility variations for callable bonds.

4. The liquidity cost estimate multiplied by the bond duration, mqt , to capture the market

pricing of the liquidity risk. The liquidity cost measure qt uses the yield change volatility to

capture the interest-rate risk. We multiply qt by the bond duration to translate the interest-

rate risk to bond return variation.

5. The yield residual from the bond valuation model multiplied by the bond duration, met , to

capture the bond mispricing and its prediction of future bond returns. The multiplication of

the bond duration translates the yield reversal movement to the bond return space.

The return factor model in (19) captures the predictive contribution of the residual yield as a

bond mispricing factor on the bond excess return while also controlling for the multi-dimensional

structural loading exposures to industry, rating, and duration, and accounting for the historical

return risk difference and the differential pricing of the optionality exposure and liquidity risk.

4.1. Variance contribution from return risk factors

We start by estimating the return factor model in (19) with ordinary least square cross-sectional

regressions at each month. To understand the contribution of each risk factor to the cross-sectional
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bond excess return variation, we construct a variance contribution (VC) measure for each explana-

tory variable. From the cross-sectional return forecasting regression rt+1 = Xtbt+1 + εt+1, where

Xt denotes the risk factor matrix and bt+1 the slope coefficient vector, the proportion of uncentered

return variance explained by the risk factors Xt can be written as b⊤
t+1
(
X⊤

t Xt
)

bt+1/
(
r⊤t+1rt+1

)
. We

decompose this total explained variation into variance contributions from each risk factor k as,

VCk,t = [bt+1]k [(X
⊤
t Xt)bt+1]k/(r⊤t+1rt+1). (20)

Table 7 reports the time-series statistics on the variance contribution estimates, including the

sample average (Mean), standard deviation (SD), and the percentile values at 10, 50, and 90th

percentiles. The table aggregates the contributions from the high-dimensional loading matrix

ω(gt ,ct ,mt) into a single percentage. The last row reports the summation of contributions from all

risk factors, which represents the gross R2 of the forecasting return regression.

[Table 7 about here.]

The structural loading matrix captures the stronger co-movements between bonds in the same

industry and similar rating and duration buckets. It explains an average of 25.9% of the return

variation. The bond return risk also explains a large proportion of the cross-sectional return vari-

ation, with the variance contribution averaging at 12.09%. The contributions from the optionality

exposure and the liquidity cost are much smaller, both averaging less than 1%. The yield residual

from the bond valuation model, which we label as the mispricing factor, explains 1.42% of the

return variation on average. Together, the return factor model can explain an average of 40.62% of

the cross-sectional bond excess return variation.

The variance contribution estimates from the different risk factors show large time-series vari-
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ations. The time-series standard deviation estimates tend to be larger than the mean variance

contribution estimates for most risk factors. Nevertheless, in aggregate, the return factor model

explains the cross-sectional bond return variation well in most days. The gross R2 estimates have a

time-series standard deviation of 19.17%, about half of the mean R2 estimate. The estimates vary

from 16.44% at the 10th percentile to 66.66% at the 90th percentile.

Figure 3 plots the time series variation of the variance contributions from the different risk

sources. We apply a 12-month moving average to the monthly estimates to remove the temporal

noise and highlight the broad variation pattern. Panel A compares the variance contribution from

the structural loading matrix in the solid line with that from the return risk factor in the dash-

dotted line. The contributions vary greatly across different market conditions. When the market

is experiencing turmoils around 2009, 2016, and 2020, the return risk factor dominates the vari-

ance contribution whereas the contributions from the loading matrix become small. During these

time periods, the structural characteristics no longer fully reflect the risk behaviors of the bond

issuances. The return volatility estimator becomes the more up-to-date risk indicator and the key

differentiator of future bond returns.

[Figure 3 about here.]

There are also time periods when the structural loading matrix dominates the variance contri-

bution whereas the contribution from the return risk factor becomes very small. This is the case

when the market is calm, and the historical return volatility estimator is not only low, but also

less differentiating of the bond’s future return variation. The structural loading matrix on industry,

duration, and credit rating becomes the most differentiating risk factors.

Panel B plots the time-series variation of the variance contributions from the optionality expo-

sure, liquidity, and the mispricing factor. The average contributions from these three risk sources
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are much smaller than that from the structural loading matrix and the return risk factor. The op-

tionality exposure contributes positively to the return variation mainly during the first half of the

sample. Its contribution becomes much smaller in the second half. The contribution from the liq-

uidity cost factor is not only small, but also unstable, and can swing from positive to negative. By

comparison, the residual yield from the valuation model can explain a small but stable proportion

of the return variation due to the yield reversal from the bond mispricing. The variance contribution

estimates stay positive and steady over the whole sample period.

4.2. The excess return behavior of the bond factor portfolios

A cross-sectional forecasting return regression on the return factor model generates slope coeffi-

cient estimates on the risk factors. The slope estimate on each risk factor represents the excess

return over the next month on the factor portfolio that targets a unit exposure to the corresponding

risk factor while being neutral to all other risk factors. Table 8 summarizes the factor portfolio

return behaviors on the left side of the table under panel (i). The statistics include the annualized

mean excess return (Mean), the Newey and West (1987) t-statistics on the mean excess return

(NW), the annualized return volatility (Volatility), and the annualized information ratio (IR). On

the right side of the table under panel (ii), we re-normalize the portfolio weights of each factor

portfolio at each month so that the absolute notional investment in each portfolio sums to two dol-

lars. By fixing the notional investment amount, the magnitudes of the mean excess returns become

more comparable to the magnitude of the average excess returns on the quintile spread portfo-

lio in Table 6, which invests one dollar long in the fifth quintile and one dollar short in the first

quintile. The table omits the statistics on the coefficients of the high-dimensional loading matrix

ω(gt ,ct ,mt), but focuses on the factor portfolios targeting the return risk, the optionality exposure,

the liquidity cost, and the bond mispricing factor.
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[Table 8 about here.]

Panel A reports the factor portfolio return behaviors obtained from the equal-weighted ordinary

least square regression. The four factor portfolios all generate positive average excess returns, but

with different magnitudes and statistical significance. The different normalizations in the two

panels lead to different magnitudes for the mean excess returns, but the scale-free information

ratio estimates are broadly similar across the two normalizations.

Per dollar notional investment, the return risk portfolio generates an average excess return of

3.82% per annum, but with a return volatility estimate about three times as high at 10.34%, result-

ing in low statistical significance and low information ratio. The optionality portfolio generates

the lowest average excess return at 0.53% per annum per unit notional, with the lowest statistical

significance and information ratio. The liquidity cost portfolio generates an average excess return

of 3.02%.

Different from these portfolios targeting different risk sources and earning risk premiums, the

portfolio on the mispricing factor represents a value-investing statistical arbitrage portfolio that

targets the bond mispricing while being neutral to all systematic risk sources. This value investing

portfolio generates the highest average excess return at 9.88% per annum per dollar investment,

and with the lowest return volatility estimate at 2.52%. The mean excess return estimate is highly

statistically significant. The information ratio estimates are also extremely high, at 4.03 when

targeting fixed risk exposure and 3.92 when targeting a fixed notional investment.
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4.3. Risk-parity weighting in portfolio construction

While the cross-sectional forecasting regression on the return factor model directly generates the

excess return on each factor portfolio, we can more generally illustrate the construction of the kth

factor portfolio in a classic mean-variance optimization setting,

min
wt

1
2

w⊤
t Σtwt , s.t. X⊤

t wt = 1k, (21)

where wt denotes the (Nt × 1) bond portfolio weight vector, Σt denotes the conditional return

covariance matrix, and Xt denotes the (Nt ×K) matrix of the return risk factors as the regressors

of the return factor model, and 1k denotes an (K ×1) vector of zeros except one for the k element.

The mean-variance optimization problem in (21) can be solved analytically as,

wt = Σ
−1
t Xt

(
X⊤

t Σ
−1
t Xt

)−1
1k. (22)

The equal-weighted ordinary least square regression on the return factor model generates the

portfolio weight under the assumption of iid return variance Σt = Iσ2. This iid return variance

assumption deviates strongly from reality. In particular, our data analysis has shown that the return

volatility can increase strongly with bond duration, credit rating, and the yield level. To construct

the portfolios more in line with the mean-variance principles, we perform a weighted least square

regression estimation of the return factor model, where we scale the excess return of each bond

and its regressors by the return volatility estimator on that bond. This volatility scaling amounts

to imposing equal risk weighting. It solves the portfolio weight according to the mean-variance

construction in (22) by assuming a diagonal covariance matrix Σt =
〈
v2

t
〉
, with each diagonal

element being the return variance estimator of the corresponding bond.
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Panel B of Table 8 reports the factor portfolio return behaviors obtained from this equal risk

weighting estimation. Through the weighting, the portfolio on the return risk factor effectively

becomes a risk-parity portfolio while being neutral to other exposures. Indeed, without controlling

for other risk factors, the weights on this portfolio will simply be proportional to the reciprocal

of the return volatility estimator. As has been found in the literature, e.g., Asness, Frazzini, and

Pedersen (2012), forming portfolios with risk parity can enhance diversification and increase the

average risk-adjusted excess return. When targeting a unit risk exposure, the annualized informa-

tion ratio for the return risk portfolio increases strongly from 0.17 with equal dollar weighting to

1.27 with risk-parity weighting.

Equal risk weighting also increases the average excess return and the information ratio on the

optionality portfolio, but it reduces the average excess return on the liquidity portfolio to virtually

zero, suggesting that the idiosyncratic liquidity risk does not ask for a significant average risk

premium when the portfolio is properly adjusted for return risk exposures.

With equal risk weighting, the value-investing portfolio becomes better diversified. The aver-

age excess return per unit notional becomes lower at 3.72%, but the return volatility declines even

more. The annualized information ratio increases to 4.08 by targeting fixed notional investment

and to 4.47 by targeting fixed risk exposure.

4.4. Accounting for same-issuer bond co-movements

The data sample includes 36,102 bonds issued by 3,814 unique issuers. The multiple bond is-

suances from the same issuer necessarily show stronger co-movements as they are affected by the

risk variations of the same issuing company. The return factor model in (19) uses the loading ma-

trix ω(gt ,ct ,mt) to control for stronger bond co-movements within the same industry, rating, and
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duration buckets, but it does not fully account for the stronger co-movements between bonds from

the same issuers.

To examine our hypothesis on the stronger co-movements between same-issuer bonds, we con-

struct two average return correlation estimators, one between bonds from the same issuers (ρSI,t+1)

and the other between bonds from different issuers (ρDI,t+1),

ρSI,t+1 =
∑i ̸= j,Ii=I j ri,t+1r j,t+1

∑i ̸= j,Ii=I j

∣∣ri,t+1r j,t+1
∣∣ , ρDI,t+1 =

∑i̸= j,Ii ̸=I j ri,t+1r j,t+1

∑i̸= j,Ii ̸=I j

∣∣ri,t+1r j,t+1
∣∣ , (23)

where (i, j) are indicators of bond issuances and (Ii, I j) denote the issuers of the correspond bonds.

The two average correlation estimators are constructed at each month on the set of return pairs from

the same issuers and different issuers, respectively. Table 9 reports the time-series average (Mean)

and standard deviation (SD) of the correlation estimates in the first row of entry, with panel A for

the same-issuer return correlation and panel B for the different-issuer correlation estimates. The

different-issuer return correlation estimates averages around 35.92%. The same-issuer correlation

estimates average nearly twice as high at 61%. Consistent with our hypothesis, the co-movements

are much stronger between bonds from the same issuers than from different issuers.

[Table 9 about here.]

Furthermore, to examine how much the return factor model can capture the return co-movement

structure, we also construct the two sets of correlation estimators on the return residuals (εt+1) from

the return factor model regression. Table 9 reports the correlation estimates on the return residuals

estimated with different weighting schemes. The estimates show that the return factor structure

is quite effective in removing correlations between bonds from different issuers. Regardless of

the weighting scheme, the residuals from the return factor model have little cross-correlation left
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between bonds from different issues.

Nevertheless, the return factor structure does not fully account for the same-issuer bond co-

movements. The time-series averages of the correlation estimates between the return residuals

from the same bond issuers average at 20.12% from the equal dollar weighting estimation and

24.42% from the equal risk weighting estimation.

To account for the stronger same-issuer bond co-movements, we re-estimate the return factor

model with a covariance matrix Σt that incorporates a 25% correlation between bonds from the

same issuers while keeping the correlation to zero between bonds from different issuers. The pro-

cess is similar to the classic two-stage least square regression. The equal risk weighting estimation

can be regarded as the first stage where we use a diagonal covariance matrix Σt =
〈
v2

t
〉
. In the sec-

ond stage, we set the same-issuer bond correlation to the average estimate on the return residuals

from the first stage estimation. Panel C of Table 8 reports the excess return behaviors of the factor

portfolios estimated with the newly constructed covariance matrix with a 25% same-issuer corre-

lation. The added same-issuer correlation enhances the diversification of all four factor portfolios.

Compared to panel B without the correlation adjustment, the return volatility estimates on all fac-

tor portfolios become lower. The information ratio estimates more than double on the return risk

factor portfolio and the optionality portfolio. The information ratio on the value-investing portfolio

also increases to 6.83 by targeting fixed risk and 4.94 by targeting fixed notional investment.

Table 9 shows that the return residuals from this second-stage estimation generate an average

same-issuer correlation estimate of 41.7%, much higher than the 25% input in the covariance

construction. One more iteration with the same-issuer correlation input set at 42% generates return

residuals with an average same-issuer correlation estimate of 43.69%, very close to the input value.

The higher same-issuer correlation input in the covariance construction further reduces the return
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volatility and enhances the information ratio estimates of the factor portfolios, as shown in panel

D of Table 8. The information ratio estimate on the value-investing portfolio increases to 7.23 by

targeting fixed risk and 4.98 by targeting fixed notional investment.

5. Concluding remarks

The U.S. corporate bond market has been undergoing rapid transformations from an opaque mar-

ket with mostly private dealings between broker dealers and long-term investors to one that is

increasingly electronic and publicly accessible. It is increasingly becoming the new frontier for

both electronic market making and systematic investment.

This paper strives to identify value-based systematic investment opportunities in this new fron-

tier market through the joint construction of a bond valuation model and a return factor model.

The valuation model explains the cross-sectional variation of bond yields with a flexible local

linear functional form in bond risk characteristics. The return factor model embeds the residual

yield from the valuation model as a mispricing factor, while accounting for stronger co-movements

between bonds from the same industry, similar rating classes, and similar duration segments, as

well as differential market pricing for bond return risk, liquidity cost, and optionality exposure.

The slope coefficient on the mispricing factor in the return factor model captures the ex post ex-

cess return on the value-investing portfolio that targets a unit exposure to the identified mispricing

opportunities while being neutral to all systematic risk exposures.

Historical analysis shows that the bond valuation model explains the cross-sectional bond yield

variation very well, with the explanatory power averaging at 95.65% and varying over a narrow

range both over time and across different industries, rating classes, and duration. The pricing
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residuals from the valuation model strongly predict future bond excess returns without bearing

systematic risk exposures.

The return factor structure can explain over 40% of the cross-sectional bond excess return vari-

ation over the next month. The structural loading matrix we construct on industry, rating, and du-

ration is the major contributor of the explanatory power, especially during calm market conditions.

The historical return risk estimator is also a key differentiator of future bond returns, especially

during market turmoils. The identified bond mispricing opportunities show strong predictability

of future bond returns while only explaining a small proportion of the bond return variation. As

a result, the value-investing portfolio targeting the mispricing opportunities while being neutral to

systematic risk exposures generates high average excess returns with low return volatility, leading

to extremely high risk-adjusted investment performance.
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Table 1
Bond yield and return variation across bond duration and credit rating
At each month, we form bond portfolios targeting different duration and credit rating levels. Entries
report each portfolio’s average yield and the summary statistics of the portfolio’s excess return
over the next month, including the annualized mean excess return (Mean), the annualized return
volatility (Volatility), and the annualized information ratio (IR). The bond yield, the mean excess
return, and return volatility are all represented in percentage points. Panel A varies the target
duration of the portfolio while holding the credit rating fixed at BBB+. Panel B varies the target
rating while holding the target duration fixed at four years.

Risk Bond yield Excess return over the next month
Measures Mean Mean Volatility IR

A. Duration

1 2.99 1.88 3.03 0.62
2 3.35 2.85 3.57 0.80
4 4.10 4.34 5.32 0.82
8 4.89 5.26 7.31 0.72
16 5.28 5.25 8.72 0.60

B. Credit rating

AAA 3.32 3.20 4.14 0.77
AA 3.45 3.36 4.47 0.75
A 3.77 3.85 4.96 0.78
BBB 4.34 4.63 5.56 0.83
BB 5.45 5.67 6.96 0.81
B 7.15 6.91 9.72 0.71
CCC 8.98 8.25 12.89 0.64
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Table 2
Bond yield and return variation with yield volatility and liquidity cost
At each month, we form bond portfolios targeting the 10, 25, 50, 75, and 90th percentile values
of a statistical risk measure while holding the target duration fixed at four year and the target
rating at BBB+. The two panels consider two statistical risk measures: (A) the historical yield-
change volatility estimator and (B) the liquidity cost measure. The statistics include the time-
series averages of the percentile values of the corresponding risk measure, the average yield of the
portfolios, and the summary statistics of the portfolio excess return over the next month, including
the annualized mean excess return (Mean), the annualized return volatility (Volatility), and the
annualized information ratio (IR).

Percentile Risk Bond yield Excess return over the next month
Measures Mean Mean Volatility IR

A. Historical volatility

10 0.85 3.45 2.40 3.90 0.62
25 1.02 3.49 2.54 4.05 0.63
50 1.33 3.69 2.95 4.37 0.67
75 2.16 4.35 4.61 6.55 0.70
90 4.12 5.80 6.61 12.74 0.52

B. Liquidity cost

10 0.35 3.57 2.93 4.48 0.65
25 0.61 3.69 3.19 4.31 0.74
50 1.26 3.87 4.05 5.08 0.80
75 3.24 4.23 3.36 5.66 0.59
90 7.00 4.83 4.64 8.95 0.52
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Table 3
Quintile portfolios constructed on option value and risk contributions
At each month, for the subsample of callable bonds with fixed strike prices, we form quintile
portfolios based on (i) the option-induced yield spread and (ii) the optionality exposure. Panel A
reports the time-series averages of the yield spread and the optionality exposure of each quintile
portfolio. Panel B reports the time-series averages of the portfolio characteristics, including the
average numeric rating, duration, and bond yield. Panels C reports the statistics on the portfolio
excess return over the next month, including the annualized mean percentage excess return (Mean),
the annualized percentage return volatility (Volatility), and the annualized information ratio (IR).

Contribution (i) Option-induced yield spread (ii) Optionality exposure
Quintile 1 2 3 4 5 1 2 3 4 5

A. Option value and risk contribution
Spread 0.44 0.85 1.17 1.55 2.77 1.35 1.16 1.27 1.38 1.62
Exposure 0.49 0.63 0.66 0.68 0.76 0.27 0.49 0.62 0.76 1.08

B. Bond characteristics
Rating 8.96 8.99 9.18 10.05 12.22 8.80 9.36 10.07 10.09 11.10
Duration 8.90 8.53 7.41 6.54 5.67 4.71 6.23 7.63 9.88 8.61
Yield 6.87 5.90 5.58 5.72 6.40 5.24 5.51 6.05 6.51 7.17

C. Excess return over the next month
Mean 7.60 5.58 5.17 3.18 1.50 -0.26 2.98 4.21 5.95 10.15
Volatility 16.12 12.94 7.79 6.89 6.17 7.55 7.46 10.09 11.59 14.48
IR 0.47 0.43 0.66 0.46 0.24 -0.03 0.40 0.42 0.51 0.70
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Table 4
The explanatory power of the bond valuation model
Entries report the time-series statistics on the cross-sectional R2 estimates from the bond valuation
model, constructed as one minus the ratio of the mean squared pricing error to the cross-sectional
variance of the bond yield. The statistics include the average (Mean), the standard deviation (SD),
the minimum, and the maximum of the time series. In addition to the R2 estimates on the whole
sample (“All”), we also compute the R2 estimates on different subsamples: (i) across the three
industry groups, (ii) the investment grade (IG) versus the high yield (HY) bonds, and (iii) short
duration (no longer than five years) versus long duration (greater than five years).

Sample Mean SD Minimum Maximum

All 95.65 1.24 91.77 97.86

Industrials 95.75 1.19 91.99 98.11
Financials 95.22 1.98 88.39 98.42
Utilities 93.99 3.09 72.76 97.83

IG 93.63 1.89 88.12 96.88
HY 96.51 1.22 91.55 98.40

Short duration 96.63 1.46 91.46 98.81
Long duration 92.79 1.73 87.60 96.99
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Table 5
Conditional loading estimates
Entries report the time-series averages of the conditional loading estimates on each risk measure
on the yield valuation model, conditional on the target risk measure at the 10, 25, 50, 75, and 90th
percentile value, respectively, while holding the other risk measures at their median level. Each
panel is for one risk measure. Within each panel, the first row reports the time-series averages
of the percentile values of the risk measure. The remaining rows report the time-series averages
of the conditional loading estimates, with βn denoting the loading estimate on the subsample of
non-callable bonds, and βc the loading estimates on the subsample of callable bonds.

Percentile 10 25 50 75 90

Rating 4.56 6.38 8.05 10.48 14.09
βn 0.13 0.18 0.22 0.29 0.33
βc 0.12 0.15 0.19 0.22 0.27

Duration 2.03 3.37 5.53 8.96 13.44
βn 0.38 0.37 0.31 0.20 0.09
βc 0.14 0.20 0.20 0.15 0.06

Volatility 0.77 0.91 1.16 1.75 3.14
βn 0.37 0.56 0.80 1.02 0.76
βc 0.00 0.24 0.64 0.97 0.79

Liquidity cost 0.35 0.61 1.26 3.24 7.00
βn -0.02 0.01 0.07 0.11 0.03
βc 0.04 0.05 -0.00 -0.01 0.00

Yield spread 0.47 0.76 1.17 1.65 2.45
βc 0.61 0.44 0.39 0.38 0.33
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Table 6
Quintile bond portfolios constructed on residual yield
We form quintile bond portfolios based on the residual yield from the bond valuation model. Panel
A reports the time-series averages of the bond characteristics of each quintile portfolio. Panels
B reports the statistics on the portfolio’s excess return over the next month, including the annual-
ized mean excess return (Mean), the Newey-West t-statistics on the average excess return (NW),
the annualized return volatility (Volatility), and the annualized information ratio (IR). Panels C
reports the statistics on the portfolio’s average yield change over the next month, including the
annualized mean yield change (Mean), the Newey-West t-statistics on the mean change (NW), and
the annualized yield change volatility (Volatility). The last column reports the statistics on the
high-minus-low (HL) quintile spread portfolio.

Quintile 1 2 3 4 5 HL

A. Bond characteristics
Residual yield -0.60 -0.19 -0.02 0.14 0.67 1.27
Fair yield 5.30 4.49 4.50 4.69 5.58 0.28
Rating 9.89 8.20 7.77 7.97 9.57 -0.31
Duration 6.41 6.75 6.49 6.69 6.67 0.27
Volatility 2.03 1.43 1.46 1.46 1.97 -0.06
Liquidity cost 2.94 2.49 2.82 2.83 3.12 0.17
Yield spread 0.43 0.42 0.52 0.47 0.38 -0.05
Optionality exposure 0.21 0.19 0.22 0.23 0.21 0.01

B. Excess return over the next month
Mean -0.41 1.76 3.70 6.25 10.84 11.25
NW -0.27 1.20 2.44 3.64 4.05 7.14
Volatility 5.60 5.66 5.98 6.40 9.19 4.71
IR -0.07 0.31 0.62 0.98 1.18 2.39

C. Yield change over the next month
Mean 1.19 0.58 0.37 -0.13 -0.41 -1.60
NW 2.60 1.63 0.86 -0.32 -0.48 -3.39
Volatility 1.40 1.24 1.36 1.40 3.00 1.84
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Table 7
Variance contribution from each return risk factor
At each month, we estimate the return factor model with an ordinary least square regression. En-
tries report the time-series statistics on the variance contributions from each return risk factor,
including the sample average (Mean), standard deviation (SD), and the percentile values at 10, 50,
and 90th percentiles. The table aggregates the contributions from the loading matrix on industry,
rating, and duration into a single percentage. The last row reports the statistics on the sum of the
contributions from all risk factors, which represents the gross R2 of the regression.

VC, % Mean SD Percentile values
10 50 90

Structural Loading 25.90 24.41 0.68 21.17 60.66
Return volatility 12.09 22.50 -8.17 4.51 45.35
Optionality 0.35 2.38 -1.62 -0.01 2.26
Liquidity 0.86 3.75 -2.64 0.07 5.43
Mispricing 1.42 1.56 -0.04 1.08 3.54

R2 40.62 19.17 16.44 39.87 66.66
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Table 8
The excess return behavior of the factor portfolios
Entries report the summary statistics of the excess return series on the factor portfolios, including
the annualized mean excess return (Mean), the Newey-West t-statistics on the average (NW), the
annualized return volatility (Volatility), and the annualized information ratio (IR). The excess re-
turns on the left side under panel (i) are directly obtained from the return factor model regression
targeting a unit exposure to each risk factor. The excess returns on the right side under panel (ii)
re-normalize the sum of the absolute portfolio weight of each factor portfolio to to two dollars
at each month. Panels A to D represent different weighting schemes for the return factor model
estimation.

(i). Excess return per unit risk (ii). Excess return per unit notional

Mean NW Volatility IR Mean NW Volatility IR

A. Equal dollar weighting
Return risk 0.10 0.64 0.59 0.17 3.82 1.36 10.34 0.37
Optionality 0.11 1.25 0.37 0.29 0.53 0.90 2.64 0.20
Liquidity 0.06 5.07 0.06 0.95 3.02 3.90 3.68 0.82
Mispricing 1.07 10.95 0.27 4.03 9.88 10.78 2.52 3.92

B. Equal risk weighting
Return risk 0.80 4.75 0.63 1.27 3.72 3.45 4.24 0.88
Optionality 0.12 1.41 0.37 0.33 0.56 1.27 1.89 0.29
Liquidity -0.02 -1.88 0.05 -0.34 -0.47 -1.99 1.36 -0.35
Mispricing 1.33 11.85 0.30 4.47 8.29 8.39 2.03 4.08

C. 25% same-issuer correlation
Return risk 1.35 9.59 0.46 2.95 5.63 4.36 2.79 2.02
Optionality 0.27 3.45 0.34 0.80 1.10 3.50 1.40 0.79
Liquidity -0.01 -1.72 0.04 -0.36 -0.24 -1.26 1.02 -0.23
Mispricing 1.62 11.36 0.24 6.83 8.81 7.26 1.78 4.94

D. 42% same-issuer correlation
Return risk 1.64 11.03 0.44 3.77 6.01 4.16 2.68 2.24
Optionality 0.32 4.10 0.34 0.95 1.22 3.94 1.34 0.91
Liquidity -0.01 -1.71 0.04 -0.36 -0.20 -1.12 0.99 -0.20
Mispricing 1.71 11.32 0.24 7.23 8.69 6.98 1.75 4.98
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Table 9
Average return correlation between bonds from the same and different issuers
Entries report the time-series average (Mean) and standard deviation (SD) of the return correlation
estimates between bonds from the same issuers (panel A) and different issuers (panel B), respec-
tively. The correlations are estimated on both the raw excess returns and the return residuals from
the return factor model estimated with different weighting schemes.

Correlation A. Same issuers B. Different issuers
(%) Mean SD Mean SD

Raw excess return 61.00 26.52 35.92 29.42

Equal dollar weighting 20.12 17.56 -0.31 0.49
Equal risk weighting 24.42 18.77 -0.22 0.55
Same-issuer correlation at 25% 41.70 24.47 0.99 2.86
Same-issuer correlation at 42% 43.69 24.41 1.27 3.24
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Figure 1
The pooled distribution of bond credit rating and duration.
The pooled distributions of the bond rating in panel A and bond duration in panel B are estimated
with a Gaussian kernel.
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A. Duration distance B. Rating distance
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Figure 2
Return correlations decline with log duration and rating distances.
Panel A constructs bond portfolios targeting different durations from one to 32 years at the same
fixed rating class of BBB+, and plots the pairwise return correlation estimates as a function of
the absolute log duration distance between the two series. Panel B constructs bond portfolios
targeting different rating classes from one (AAA) to 21 (C) at the same four-year duration, and
plots the pairwise return correlation estimates as a function of the absolute distance in numeric
ratings between the two series.
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Figure 3
Time-series variation of variance contributions from different risk sources.
Lines plot the 12-month moving average of the time-series variations of the variance contributions
from different risk sources. Panel A plots the contributions from the structural loading matrix
(solid line) and the return risk factor. Panel B plots the contributions from the optionality exposure
(solid line), the liquidity cost (dashed line), and the mispricing factor (dash-dotted line).
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